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Abstract — For magnetodynamic problem decomposed to
subdomains, the Mortar method can be associated whit
potential formulations to connect nonconforming mekes. In
this paper, we propose to use the bi-orthogonal netl shape
functions with the Mortar method in the case of A¢
formulation. An academic example will be studied toshown
the accuracy of the proposed model.

. INTRODUCTION

To model electromagnetic devices, the finite elemen
method is used. In order to minimize the mesh, miocak
methods based on the domain decomposition can dxk us
The studied system is divided into several sub-dosna
according to their dimensions and their sizes. Esulb-
domain is discretized independently. The Mortar hodt
can be used to connect the solution of differenh-no
conforming meshes. In the case of magnetodynamic
problem, the electrié\-¢ formulation can be used. From the
Mortar method, a relation associated with each riate
must be defined. These relations are introduceatder to
verify the continuity of the fields. The drawback this
approach is the inversion of submatrixes associattdthe
connection of the solution in non-conforming meshes
order to avoid this constraint, the bi-orthogonalase
functions can be used [1, 2].

In this communication, we propose to investigate ke
of the bi-orthogonal shape functions with the Mborta
method and thé\-¢ formulation. The numerical model is
presented and an academic example is analyzed.

II. NUMERICAL MODEL
A. A- ¢gformulation

Let us consider a domain D of bound&nfFig. 1). D is
divided into two subdomains;@and B of boundary; and
I, respectively (D=B0D,). Both subdomains are separated
by a boundary denoteldz. In D, a conducting part Hof
boundaryl'c belonging to B and B through byrlg is
considered.

Fig. 1: Studied domain

Using the formulation in term of vector potential and
scalar potentialp, the weak formulation to solve in each
subdomain k can be written such that:
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with @ a magnetic flux,N and K are the source
fields (curl K= N) associated withd [3], Js; and Js, the
current density in two inductors. In your developtehe
components ofN and K are equal to zero oR,. (.,.)x
indicates the scalar product on the domain B,.> the
scalar product oy and d; the time derivative. In these
expressionsA'y and ¢'x represent the test functions which
are chosen in the same discrete space that thee shap
functions ofA and ¢ respectively. Taking into account the
boundary conditions and the propertiesAdf in (1), the
surface integral term ory which corresponds to the
tangential component of the magnetic field candukice to
.. In the same way, in (2), the surface integrahterhich
corresponds to the normal component of the cudensity
can be reduced dn..

B. Continuity at the interface /5

To ensure the continuity of the fields at the ifstee g,
the classical next conditions must be verified:

H, Ony|, ==H, On,|, =H, ©))

=J, (4)

whereJ; andJ, the eddy current in § Moreover, we also
must verify the continuity of both potentials bpsuch that:

(Ai=A;,A) =0 and (g -¢,¢) =0. ()

with A" and@' test functions so that the choice is introduced
in the next section.

Jl.nl\rrc = —\]Z.nz\rrc

C. Discrete form

At this step of the analysis, we must discretizegbtentials
Ay and @y, the fieldsH; andJ, and define the test functions
A, ¢ A' and ¢'. Using Witney's element the vector
potential A, is naturally discretized in the edge element
space and the scalar potentpalin the nodal element space
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[4]. Consequently, using the Galerkin methdd, and ¢’k
take the form of edge and nodal elements respécti@n

I, the tangential component of magnetic figldand the
normal component of the induced currdptbelonging to

I are respectively discretized in the edge and nodal
element space. At last, the test functidtand¢' onl", are
taken in the same space thdpnandJ, respectively. In these
conditions, the discrete form of (5-a) and (5-bg aritten
under the matrix form:

1= DAorr and  Go1r= Dnbor (6)

where Ar, and Ar, represent the vector of the circulations
of the vector potential oh, and,r, and ., the vector of
nodal values of the scalar potential [gg The elementary
terms of the matrix Cand I take the form:

Cuy =W, W),

with we; and we, the edge shape functions associated with
A; and A respectively anav'y; the test function. The matrix
C, and DO, are defined similarly with nodal shape functions.
In (5-a) and (5-b), the integral surface termlgnwritten in
discrete form, depend on the same shape functimrsthe
discrete continuity relations on (6). Consequerttigy can

be written:

and d;, =<W'ei,WF_,k>r (@)

I'_T—|lr'r:CteHl'r and Il?|2I'r:DteHl'r 8)

FJlrr:Cthr'r and lEZT'r:DanI'r 9
At this step of the analysis, using the Mortar rodthit is
possible to substitute the unknownsrf and ¢,rr and
combining FE equations system such that it is eoeasary
to calculate H. and J,. Nevertheless, we must compute the
inverse of the matrixes .Cand G. To simplify theirs
computations, it is possible to define bi-orthodosiaape
functions forw'e and w; [1, 2]. In these conditions, the
matrix G, and G begin diagonal. It is possible to find bi-
orthogonal shape functions for nodal element aadsital
edge element. Unfortunately, it is known that thessical
edge element used in Mortar method induced numerica
error on the boundary of non-conforming mesh. Toicv
this difficulty, a second family of edge elementiassically
used [5]. Consequently, for edge elements, we E®{o
build the test functionsw'e from bi-orthogonal nodal
function w,,. In this case, we have:

W =W, gradw (10)

The matrix G is not diagonal but the number of terms is
notably reduced.

I1l.  APPLICATION

The proposed approach has been used to model a
conducting hollow sphere crossed by a sinusoidax fl
density. The conductivity is equal to {Q@m)* and the
maximal value of magnetic flux density to 1T. Tadst the
system, two meshes have been considered. Theffiesi1
is fine and the second M2 is composed with a paMD
and a coarse complementary mesh (Fig. 2).

coarse mesh

Fig. 2: Studied example (2.a) and part of the n\M2H2.b)

In Fig. 2, we can see that the bounddry crosses
horizontally the sphere. With the three meshes,

modeling has been done for a frequency of 100HZi¢n
3, the losses powers in the sphere in functioniroé tare
presented. We can observe that the results obtdineu
M1 and M2 meshes give the same results.
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Fig. 3: Losses powers in the sphere with fine and
non-conforming meshes
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IV. CONCLUSION

In this paper, the Mortar method has been used to
connect non-conforming meshes in magnetodynamic
problem. To reduce the memory space, the bi-orthalgo
nodal functions have been used. For the edge angtiwve
propose to define the second family built from bi-
orthogonal nodal functions. As example of applmatia
hollow sphere is studied and the obtained restittsavnon-
conforming mesh are in good agreement compared avith
fine mesh. The method can be applied to the maghefl
formulation.
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